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An anisotropic band model for helimagnetism and spin- 
density waves, with application to Cr and MnP 

J Sjostrom 
Department of Theoretical Physics, Royal Institute of Technology, S-100 44 Stockholm, 
Sweden 

Received 30 October 1989 

Abstract. A n  expression for a general q-dependent static spin susceptibility is derived by 
means of perturbation theory, including a two-electron exchange operator and spin-orbit 
coupling. Numerical calculations for hypothetical sets of two bands close to the Fermi level 
show that significantly stronger magnetic response can occur for q # 0 than for 9 = 0, but 
only for interband transitions and if the bands intersect the Fermi surface in such a way that 
the region of close contact between the 9-shifted bands and the Fermi surface is larger than 
the corresponding area for the unshifted bands. According to performed band calculations, 
this can be the case for Cr (spin-density wave, SDW) and MnP (helix). A symmetry con- 
sideration of a helical spin distribution shows that the symmetric and antisymmetric parts of 
the anisotropic exchange correspond to different bunching and modulation of the spins. For 
example, a longitudinal SDW (as in Cr) corresponds to a vanishing antisymmetric exchange 
(AE),  while a circular uniform helix minimises the A E  and has a vanishing non-diagonal 
symmetric exchange. 

1. Introduction 

The first report of a magnetic structure with helical spin (HS) arrangement is from 1958 
by Nagamiya for MnOz [l] .  Earlier observations of the neutron diffraction spectrum of 
Mn02,  which had given puzzling results, gave support to the interpretation that the 
magnetic moments change direction periodically like a helix incommensurate with the 
lattice. At the same time Carliss et a1 [2] found that the magnetic structure of Cr is a 
complicated type of antiferromagnet where all the magnetic moments have the same 
direction while their magnitude is sinusoidally modulated, i.e. described by a spin- 
density wave (SDW). 

As the experimental methods were refined and the number of investigated mag- 
netically ordered systems increased, the number of systems discovered with helical 
structures and other complex types has increased. A compilation (table 1) by the 
author shows, however, that incommensurate magnetic structures are still uncommon 
compared with the large number of systems with collinear structures. 

In a localised spin model based on the Heisenberg Hamiltonian, it has been established 
that positive exchange integrals correspond to ferromagnetism and negative to anti- 
ferromagnetism. A necessary, but not sufficient, condition for a helix, in general incom- 
mensurate with the lattice, is that exchange integrals of different sign occur [l, 31. 
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By using molecular field theory or other statistical methods, one may also treat 
itinerant magnetic systems at arbitrary temperatures. However, such methods have the 
drawback that they give almost no fundamental information about the exchange since 
the magnetic field is introduced ad hoc. 

In the 1960s several papers were published which treated the spin-density wave 
in Cr in an electron-gas approach, where the spins were polarised by the exchange 
interaction. The results can be summarised in the following way: (i) In the Hartree- 
Fock theory, instabilities in the calculated susceptibility curve occurred at q = 2kF [4]. 
(ii) The instabilities occurred only for long-range interaction with a lower electron 
density than for realistic metals [ 5 ] .  (iii) The Fermi surface is crossed by several 3d bands 
[6]. (iv) Two nearby bands, whose energies are close to each other and the Fermi surface, 
lead to an instability of the spin susceptibility for a small q vector [7]. The only paper 
from the 1960s which we have found to be a basis for a more general theory for HS and 
SDW is the band theoretical part of the work of Fedders and Martin [7], where they used 
the T matrix for electron-hole scattering in a two-band theory. However, that paper 
was adapated to explain the SDW in Cr and is not applicable to HS since spin-orbit 
interaction is neglected. 

More recently Ukai and Mori [SI performed band calculations for Cr by introducing 
potentials corresponding to a lower symmetry than that of the crystal. They found, in 
agreement with experimental results, that a SDW with wavelength of 21 times the lattice 
constant gave the lowest energy. 

Kataoka et a1 [9] used perturbation theory to derive an expression for a q-dependent 
susceptibility in an itinerant system including spin-orbit coupling. They found, for 
example, that the spin-orbit coupling by means of the antisymmetric part of the sus- 
ceptibility tensor can be important for establishing a helix. However, that work is based 
on a one-band approach. As we will argue, and as has been found by Fedders and Martin 
[7], intraband excitations can give rise to a helix or SDW only under not very realistic 
conditions. In a real metal there exist multiple bands and mixings between different 
bands, which furthermore intersect each other at several points. A necessary feature of 
a physically reasonable theoretical model of itinerant magnetism is thus that it takes into 
account interband transitions as well as the spin-orbit coupling. As far as we know, no 
such model has been developed for incommensurate magnetism. 

One way to circumvent the difficulties discussed. above is to use density-functional 
theory. Kubler et a1 [ 101 have, for non-collinear antiferromagnetism, very recently 
performed a self-consistent spin-polarised band calculation based on the local approxi- 
mation. A generalisation of their method to incommensurate structures seems to be 
possible but leads to very complicated computational problems and as far as we know 
only cluster calculations [ 11, 121 and non-self-consistent band calculations [ 131 have 
been performed for HS. We believe that self-consistent band-structure calculations with 
areasonable approximation for the potential is the best method to determine the energies 
for different magnetic structures for a given system. However, if one is mainly interested 
in the fundamental physical principles of incommensurate magnetism, it seems that an 
appropriate investigation of a general spin-propagation-vector-dependent susceptibility 
should give more relevant information. We will therefore in this paper generalise the 
work by Kataoka et a1 [9] to include a two-electron exchange operator, which enables 
transitions between different band electrons (sections 2 ,3  and 5). By utilising symmetry 
arguments, we obtain in section 4 some characteristic properties for HS and SDW. In 
section 6 we make a simple application to MnP (helix) and Cr (SDW). 



An anisotropic band model for helimagnetism 4639 

2. Hamiltonian for two-band electrons in a crystal 

In order to study the magnetic energy in a multi-phase magnetically ordered system the 
q-dependent susceptibility tensor x(q)  is a very useful quantity since its maximum value 
corresponds to the lowest exchange energy. A peak in x(q) at q = 0 would then mean 
ferromagnetism, and the one at some other q would indicate a helix, SDW or a more 
complicated arrangement of the magnetic moments and with a period defined by that 
wavevector q. 

In order to derive a general q-dependent susceptibility for a two-band system we 
consider the following effective Hamiltonian in second quantisation: 

x = xo + Yeex + x,,. (1) 

Here Xois the Hamiltonian for the non-magneticsystem without thespin-orbit coupling. 
It includes, for example, the total kinetic energy of the system and core-electron 
interaction and is a diagonal operator given by 

x,) = & k  2 aLahf .  (2) 
k s  

Further, in (1) 'de,, is an effective operator, which represents the excess exchange energy 
for all possible two-electron excitations that arise under spin polarisation of the band 
electrons. The one-electron processes can be included in X e x  (two independent one- 
particle processes) and in 'de,, (excitation of higher order). In second quantisation X e x  
has the general form 

The matrix element of X e x  is the matrix element of an operator T, , (x l ,  xz) with respect 
to spin orbitals indicated as subscript 

X ( k - q ) s " , ( k ' + q ) s " ' , b , k ' s '  = ( ( k  - q ) S " ,  (k' 4)S"'I T e x  Ik's', h) 

s " ' ( C l  ) T e x ( x l  , x 2 ) @ k ' ( r 2 ) S ' ( 5 2 )  @ k ( r l ) s ( C l ) *  (4) 

Here we consider the case when two particles in state ( k ,  s) and ( k ' ,  s') are annihilated 
and two new particles in the states (k  - q, s") and (k' + q, s'") are created. We use the 
notation @ k ( r ) S ( C )  for the spin orbitals used as basis functions for ab. 

In principle one could start with an operator Tex(x l ,  x 2 )  that has the most general 
form possible, i.e. it depends in some unspecified way on xi = (ri ,  CJ. Since the spin 
space is spanned by only two functions, a and P ,  we can write 

Tex(x1, ~ 2 )  = T:;a(C,)a(Cz) + T$a(Cl)P(Cz) + TgFP(Cl)a(CZ> + Tt'!P(Cl)P(Cz) 

if Tex(xl,  x 2 )  is only a multiplicative linear operator. In the more general case when 
Tex(xl, x 2 )  is a non-multiplicative linear operator, we can write it as a combination of 
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operators working on r ,  and r2 and a combination of the vectors of Pauli spin matrices 
IJ, and 02, i.e. 

so that 

X ~ k - q ) s , , , ( k , + q ) s , , f , k s , k , s ,  = 2 ( S ” l 0 ;  IS)((k - q)S”,(k’ + q ) s ” ’ / T , , ~ ~  IkS, k’S‘)(S’r’IO, I S r ) .  

3 

i.j= 1 

(7) 

The second-order tensor T,, can be separated into a scalar T I S ,  an antisymmetric vector 
TAV and a traceless symmetric tensor 0 [3] 

T,,  = TIS + TA” + CP (8) 

where 

T, ,  = gtr T,,  

T~~ = XC. (T ,  - Tj i ) ( e i  x e j )  

- I T ,  - i t r  T, ,  (4; = x ,  y ,  2) 

and TA” (antisymmetric) and CP (symmetric) correspond to anisotropic exchange and are 
usually small. The physical origin for CP is mainly the magnetic dipole-dipole interaction. 
Since the dominant antisymmetric anisotropic term is from the spin-orbit coupling [ 1,3] ,  
which we treat separately (cf. (l)), we can neglect TAv in expression ( 8 ) .  It is not clear 
that in general one can also neglect the symmetric tensor Cp. However, in this paper we 
will consider only the anisotropy from spin-orbit interaction, i.e. the case T,, = Atr T,, = 

In order to make contact with spin-polarised band calculations, we introduce the 
local-spin-density approximation and follow the von Barth and Hedin [ 141 expansion of 
the exchange correlation potential Vxc(n(r))  to first order in the difference of majority 
and minority spins ne(r) and nP(r), yielding 

TIS * 

V , c ( W )  = Pxc(nW + A(n(r)){[n”(r) - nP(r)l/n(r)h (9) 

Here pxc(n(r))  andA(n(r)) are independent of the spins and are related to the chemical 
potential of an electron gas. If we adapt (9) to the exchange potential T,, = TIS defined 
above, we can write TIS as a product of an effective local potential Vex(r)  = -A(n(r)) 
with the period of the lattice and the fraction spin density S(r) = [n@(r) - nP(r)]/n(r) (in 
principle incommensurate with the lattice): 

TIS = - V c x ( 4 W -  (10) 

By using (10) and (7) in (3), we obtain the following exchange operator expressed in 
fundamental quantities 
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1 
X c x  = -- (sfflu, Is)((k - q)s”,  (k’ + q)s‘”I Vcx(r)S(r)lks, k’s ’ )  

2 k . k ’ . q  S.S’,S’’,S”‘ 

x (sf”[ 0 2  ~ ~ ’ ) ~ ~ , + ~ ~ ~ , ‘ ~ ~ ~ - ~ ~ ~ ‘ , ~ ~ ~ k , ~ , .  (11) 
The last term in (1) is the spin-orbit operator [ 151 

where 

This implies that Xso is an anisotropic operator. 
By expanding the sum over the spins in (12) one obtains 

where a matrix element A,, corresponds to the probability to have an excitation between 
spin states s and s‘.  Obviously (13) is not diagonal. However, since the matrix has the 
eigenvalues + L k  one easily get the following expression for diagonalised Xso:  

s k  

where 

The diagonalised operator basis cb, c: is related to ah, UL by the unitary matrix up in 
the following way: 

L k  = ( L k  + L& + Liz)”*. 

In order to make the structure and the physical significance of the exchange part of the 
Hamiltonian more clear, we introduce an exchange field defined by 

By using (1 1), (14), (15) and (17) we can now obtain the Hamiltonian (1) in diagonalised 
form for a band system: 
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Here p ,  p', p" and p'" are the band indices. In (19) we have utilised the following Fourier 
transform and the fact that the wavefunctions are of Bloch type, i.e. 

FG(k7 k'7 k - 43 k' - q)pp'p"pc"' = 2 Uk*-q+C+G'.p"U~'+q+G+G".p"'Uk+G.p~k+G.pc' (20) 
G'.G" 

3. Wavevector-dependent spin susceptibility in a two-band system 
3.1. Basic theory 

Since time- and space-varying magnetic fields are generally quite small in magnetically 
ordered systems, a linear response theory is usually adequate [16]. If the band electrons 
act as a liner medium, the susceptibility is independent of the effective magnetic field, 
and we may write [ 161 

s G , i f q )  = 2PB 2 2 X ( q ) ~ G ' s i , H $ ' , , f q ) *  (24) 
G' I 

The corresponding exchange energy is 

The expectation value of the exchange energy can also be written (cf. (19)) 

( & e x )  = 2 2 F G ( ~ ,  k ' ,  k - q7 k' + q ) p p ' r " r " " ' ( O I c : - q c k ( O )  
p.p' SJ'. G k . k ' . q  p("*p"' 

x (SI'\ U k - q ( T l  U i1 1 $)HE (q)(o I c: +qck 10) (s"') U k ,  +Q (Tzu;' 1 sf').  (26) 

IfHeff in (25) is equal toHeX defined in (17), we can here identify the spin density defined 
in (25) as 

sz(4)=L 2 2 2 2 Fc(k,k' ,k-q,k'+q)rp,r , ,r , , , (OIC:-qCklO) 
2SZ p , ~ ' ~  @,!, f ,  SJ', G k , k ' . q  

x (s"I U k - q  01 U i1 I s)(o I ck+. + q c k '  10) (s"' 1 U k ' + q  (Tzu i1 Is'). (27) 
Here SZ is unit volume. By treating Yeex (i.e. (19)) as a perturbation on Ye,, we obtain the 
wavefunction of the ground state in (27) up to first order. We can then calculate the 
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expectation value of ST; (q)  and by using (24) we recognise the tensor expression for the 
susceptibility defined above: 

x(q)mf,ij = x ( c l > d c G 4 i d  + x(q)%,,ij + x(q)%%j). (28) 
Here 

x(q)%’,!, = 2 2 AGG’.ss’s”s”’(k? k’ ,  - 4, k‘ - q ) ( s ” / U k - q a l i U ; ’  1s) 
S , S ’ ,  k.k’  
S“. s“’ 

(s I U k o 1 ,  U ;!q 1 S’’)(s’ I U k’ (Tz,u G!+q I s”’)(s”’ I U k‘ + q  0 2 ,  U i’ I s ’ )  (30) 

where 

A G G * . ~ ~ , ~ ~ , , ~ ~ , , , ( ~ ~  k ’ ,  k - 4,  k’ - 4)  

= ( p g / Q ) F G ( k ,  k ’ ,  k - 4, k’ - q)FGr(k, k ’ ,  k - 4, k‘ - q)* 

x If(&F - & &  + S L k ) f ( & F  - &k’ + S ’ L k f )  

x f ( & k - q  - s ’ ’ L k - q  - & F ) f ( & k ‘ + q  - s ” ’ L k ’ + q  - & F )  

X ( A & g  -I- S ” L k - 9  + S “ ’ L & , + q  - S L ,  - S ’ L k , ) - ’  

- f ( & F  - & & ) f ( & F  - & & ’ ) f ( & k - q  - & F ) f ( & k ’ + q  - & F ) / A & O ] *  (31) 
Here f(x) is the Fermi function, i.e. f(x) = 1 for x > 0 and 0 for x < 0 when T = 0. 
Further & F  is the Fermi energy, A&o = & k - q  + E ~ + ~ -  tzk‘ - In general the states k ,  
k ’ ,  k - q and k’ + q belong to different bands. For brevity, however, the band indices 
have been suppressed in the expressions above. We find that x has two diagonal terms, 
one (xd) from the exchange interaction and one from the spin-orbit coupling ( f o ) .  The 
non-diagonal contributions (fd) arise from the exchange interaction but also indirectly 
from the spin-orbit interaction via the matrix U k  given by (16). The explicit expression 
for xso can be found in [17]. In (30), the summation is over all spin states that conserve 
the initial spins (s + s ’  = s” + s”’). 

By using expressions (17) and (24) in (25) and adding the spin-orbit energy, one gets 
the total magnetic energy 

One may therefore, by studying the susceptibility expressions (29)-(31), observe that 
(32) in fact is a linear function of x since the spin components are proportional to x (see 
(24)) and get some ideas about the origin of incommensurate magnetic structures. 

For a band crossing the Fermi level, the energy denominator goes to zero for 
transitions with q = 0 within that band and consequently the susceptibility has a peak 
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q (deg)  

Figure 1. Results from the numerical calculationsof the isotropic ( IS) ,  symmetric anisotropic 
(SY) and antisymmetric anisotropic (ASY) contributions to the susceptibility as a function of 
q ,  for two flat bands (one below and one above E ~ )  at T = 0. Here x is presented in relative 
units and q is expressed by the rotation angle for a helix by assuming a crystal with a lattice 
parameter of 5 A .  The anisotropic terms correspond to a spin-orbit energy of 5% of the total 
energy. 

for that q value. However, high magnetisation for q # 0 is also in principle a possibility 
for a band that intersects the Fermi surface two or more times. On the other hand, owing 
to the properties of the Fourier transform of e.g. a 3d or 4f orbital, the numerator is a 
monotonical decreasing function of q and consequently ferromagnetism seems to be 
favoured by all ordinary intraband transitions. 

The situation is different for interband transitions since the denominators in (29) 
can, for q # 0, be small over an appreciable region but are in general non-vanishing for 
q = 0 transitions. 

We have therefore found it worth while to study systematically the susceptibility as 
a function of q for two bands near to the Fermi level. In this way, we can investigate if 
the predicted peaks for certain q values can be reproduced for physically reasonable 
band structures. To do this we have simulated a number of hypothetical band structures 
and calculated the susceptibility numerically. 

3.2. Numerical calculation of x(q) 

It is too complicated to calculate the q-dependent susceptibility for incommensurate 
magnetic structures self-consistently through a band calculation, for example. The 
calculations therefore rely on a large number of sets of simulated hypothetical band 
structures and orbitals of 3d character. To start with, we have only calculated the 
dominating diagonal (isotropic) contribution, i.e. (29). In order to simplify the cal- 
culations, we have assumed that the bands are spherically symmetric and considered 
only two-band systems at T = 0. 

The results show that for band structures that do not cross the Fermi surface the 
susceptibility curve is a monotonically decreasing function of q (figure 1). For bands 
that cross the Fermi surface, under certain conditions, peaks in the x(q)  curve of very 
variable width and amplitude can occur. More precisely, necessary but not sufficient 
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conditions are: (i) both bands intersect the Fermi surface at least once, (ii) narrow bands, 
(iii) small derivative de(k)/dk at k = kF and (iv) intraband transitions. We find for 
excitations involving two intersection points that the magnetic response can be sig- 
nificantly stronger for q # 0 than for q = 0. This result is, however, valid only for band 
structures of the types given in figures 2(a) and (b) .  On the other hand, for excitations 
between bands involving three different levels, we obtained no large maximum ampli- 
tude in the x(q)  curve for q # 0 (figure 3). In figures 2(a) and (b) ,  we show examples of 
how a slight modification of the bands can correspond to a significant change in the shape 
of the x(q)  curve. One may understand this behaviour by studying the denominator of 
the expression (29): 

N(k ,  k ' ,  4) = & k - q  + & k ! + q  - E k  - & k ' .  (33) 
When x(q)  assumes its maximum value for q = qo # 0, it is mainly a consequence of the 
fact that N ( k ,  k ' ,  q )  goes to zero. This is, however, possible only when k and k' go to k,. 
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Figure 3. A typical example of a two-band structure with three intersection points of the 
Fermi level. The numerical calculations of this type of band structure show only a slight 
broadening of the x curves in figure 1. 

Furthermore a sharp peak in the x(q)  curve can occur only if N(k ,  k ’ ,  q )  is still small for 
k and k’ values in the neighbourhood of kF (because the summation is performed over k 
and k’ independently of each other). We can investigate if this is the case for the band 
structures in figure 2 by calculating the derivatives of N ( k ,  k’, q )  with respect to k and 
k ’ .  If we expand &k in a power series, we can keep only the linear terms (a , ,  bl ,  cI and 
dl for corresponding terms in (33)) in the neighbourhood of the minimum point (i.e. 
q = qo) and get 

d N / d k  = a l  - cI 

d N / d k ’  = 61 - d l .  

(34) 

(35) 

For the band structure al-P (in figure 2(a)) the sum of (34) and (35) is zero. The same 
sum is small but non-zero for a2-P and a3-P (in figure 2(a)), in increasing order. This 
holds, and this is important, also if we take into account the occupation function 
constraint in (29). In fact, the discussed conditions for strong peaks in the x ( q )  curve are 
very difficult to satisfy, because they drastically limit the possible shapes and energy 
levels of the bands, and we have not found any bandstructure type of the two-band type 
other than the one given in figures 2(a) and (b )  that satisfies them. According to our 
calculations, the conclusions above still hold if we take into consideration the single 
interband excitation according to Kataoka et a1 [9]. 

The interpretation of the numerical calculations is that topological properties of the 
Fermi surface is of vital importance to establish a helix of SDW. 

Concerning the approximations in the calculations we may note that Umklapp 
processes (i.e. G # 0) have a very small influence. The same holds for the shape of the 
3d orbitals. For a real and structure the k summation is performed over a Fermi surface 
that may deviate considerably from spherical symmetry. This affects, of course, the shape 
of the susceptibility curve. However, it seems reasonable that there is no qualitative 
difference because the properties of the Fourier transform and the mechanism for the 
peak in the x curve are the same, independently of how E varies with k .  

From a mathematical point of view it is not clear that equation (29) converges for all 
types of bands. If all four energy levels involved are located at and moreover the 
Fermi surface is exactly plane for these k values, (29) may diverge or have a pole. 
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Table 1. The crystal symmetry of systems with magnetic helical or SDW in the ground state. 
The rare-earth elements H o  and Er, with the same crystal symmetry asTm, have helical and 
SDW phases but their ground states have magnetic cone structures. 

Crystal Inversion 
Compound structure Space group symmetry 

Helix MnO, Tetragonal P4,/mnm = D!,4h Yes 
MnI, Trigonal P3ml = Dld Yes 
FeC13 Trigonal R 3  = qi Yes 
CSCUCl3 Hexagonal P6,22 = Di No 
RbFeCl, HCP P6?/mmc = Dih Yes 
MnP Orthorhombic Pnma = D:Oh No 
FeP Orthorhombic Pnma = Di6h No 
CrAs Orthorhombic Pnma = Dit No 
CoMnP Orthorhombic Pnma = DL No 
CrAs,, $b,,, Orthorhombic Pnma = D:: No 
MnSi Cubic P2,3 = T4 No 
FeGe Cubic P2,3 = T' No 
MnAu? ? ? ? 

SDW Cr BCC Im3m = 0; Yes 
Tm HCP P6?/mmc = D&, Yes 
HoRu,Si, Cubic I4 = D:: Yes 

Ref. 

However, it seems very improbable that band structures corresponding to large regions 
of an exactly plane Fermi surface can be solutions to a Schrodinger equation. We can 
therefore make the well founded assumption that x is real and finite for all physically 
reasonable band structures. 

The next step will be to take also the anisotropic term, expression (29), into account. 
In order to understand better how the anisotropic energy influences a helix and SDW, we 
will begin the next section with a symmetry analysis. 

4. Symmetry analysis of a helix and a SDW 

Table 1 gives 13 examples of systems with a helix structure (HS) and the only three 
examples of the very uncommon SDW. In table 1, a striking fact is the property that most 
of the crystal structures have mirror symmetry. 

For HS it is also characteristic that a great number of the crystals lack inversion 
symmetry while all the SDW systems have inversion symmetry. Cubic symmetry seems 
to be under-represented in HS but not in sDW systems. Further, we see that the most 
frequent elements are Mn and Cr in compounds with a semiconductor (P, Si, Ge). 

As has often been noticed, anisotropic exchange seems to be a determining factor 
for a spiral structure [l, 3,9]. One can understand this by writing out the anisotropic 
terms of the magnetic energy (expression (32)): 
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For simplicity we have suppressed the reciprocal indices G in (36) (cf. (32)). 
It is obvious that for a ferromagnetic structure with, say, S, = SgXex, all terms except 

thex term are zero. On the other hand for a HS in, say, thexy plane, the number of non- 
vanishing terms in (36) is four. This means that a HS can in principle, due to the anisotropic 
terms in (36), get a lower energy than a ferromagnetic configuration. 

The non-diagonal matrix elements of the susceptibility tensor (or its inverse) can 
be separated into a symmetric ( x i p  = x;~; C U , ~  = x, y ,  z )  and an antisymmetric term 
(x2p = -x@: 
xnpS,,S;p + xp,SqpS;, = ( X L p  + x",so)S,,S,*p + (xb, + x$J~,pS,., 

= X&(S,a s ;p  + S&,) + x:p(S,,s;p - S,S;cr>. (37) 

We will now investigate in which way relation (37) is governed by the symmetry of the 
spin density. 

The Fourier transform of a general spin density may be written [9] 

where p is a distance vector in a unit cell. For the special case with only one q vector and 
G = 0, (38) is reduced to 

S,(r) = S,, e'," + S* U, e-iq'r = SI,, cos(q r) + SZag sin(q r )  (39) 

where 

r = R n  + p  

and 

SI, = S, + S-; = S ,  + S i  = 2 Re S, 

SZq = i(S, - S-,) = -2ImS,.  

From the symmetry point of view, the restriction to G = 0 is not critical since all the 
terms in the reciprocal-lattice sum in (38) have the same point-group symmetry. 

We will assume that a simple type of helix is given by [ 181 

S ,  = +(U + iu) e'@(,) (42) 
where U and U are orthogonal normalised vectors and @(q) = r * q + qo ( y o  is a phase 
angle. A component of S, in (39) can thus be expressed as 

S ,  = i(u,  cos CD - U ,  sin @) + di(u, sin @ + U ,  cos @). 

s,,s;, + sp,s;, = i(u,up + U , U p )  

(43) 

(44) 

By using (43) the spin product terms in (37) can now be written as 

Because U and U are orthogonal unit vectors, (44) is (independently of the orientation 
of U, U) equal to zero for a helix in the ab-plane. On the other hand, the antisymmetric 
expression (45) assumes its extreme value for a helix of type (42). 



An anisotropic band model for helimagnetism 4649 

l o )  

Figure 4. Schematic illustration of different types 
of magnetic helical structures: (a )  isotropic cir- 
cular helix: (b)  bunched circular helix; (c) modu- 
lated helix; (d )  elliptic helix. Cases (b)-(d) 
correspond to different anisotropic exchange 

I d )  energies. 

For a simple SDW, as in Cr, a spin component has the form [19] 

S ,  = 2 c, sin(q, - r + (46) 
where the first harmonic dominates. 

Contrary to the helix case, expression (46) corresponds to vanishing antisymmetric 
exchange (ASE) and maximum or minimum symmetric exchange (SE). A more general 
helical spin configuration than (38), with a modulated amplitude and/or a bunched 
distribution, as is illustrated in figure 4, has both SE and ASE because it may be written 
as a linear combination of (42) and (46). 

One can experimentally determine if a helix is symmetric or antisymmetric from its 
dynamic spin-wave spectra [20]. The spin distribution can be measured by neutron 
diffraction, Mossbauer spectroscopy of nuclear magnetic resonance. This means that, 
if the experimental resolution is sufficiently good, one can verify if the conclusion about 
the space distribution of the spins is in agreement with experiment. 

A natural extension of this work is thus to study the SE and ASE in more detail. The 
SE and ASE contributions to the susceptibility in (30) can be explicitly expressed in L,. 
By using (16) and (31) and performing the summation over the spin indices for the 
second term in (30) under the constraint of spin conservation, one gets: 

xgG,.ij(q) = l~(i, j)[ 2 2 ( A G G , , I - l - l l  + ~ G G , , - l ~ - l l )  
p , ~ ' ?  k,k '  
I(" 1 P"' 

and 
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- (Lk-q L k)(Lk' + q * j)]lL k Kk' k -  q Lk' + p * (48) 

Here A(i ,  j )  is the antisymmetric operator (A(& j )  = - A ( j ,  i)) and i, j ,  n are space 
coordinates x ,  y ,  z (notice that the n-coordinate in (47) is directed perpendicular to the 
spins). 

It is obvious from (31) that the expressions (47) and (48) vanish for Lk = 0. As 
Kataokaetal[9] have shown, Lkvanishes forcrystalswith an inversioncentre (neglecting 
relativistic effects), i.e. corresponding to a symmetric anisotropic exchange. An inter- 
esting consequence of inversion symmetry is that if a helix and a SDW of types (42) and 
(46), respectively, have the same isotropic energy, the SDW gets according to its collinear 
spin arrangement, lower anisotropic energy and consequently also lower total magnetic 
energy than the helix. Experimental results for Cr, HoRuzSiz and Tm (table 1) confirm 
that inversion symmetry favours SDW and we have not found any counter-example. One 
may also note that a requirement for a contribution from the ASE expression (47) is that 
Lk has a component perpendicular to the plane of the helix. In a localised spin model 
one can show, by combining the atomic expression for the angular momentum (see, e.g., 
the textbook by Zieger and Pratt [21]) with the symmetry relations of the DM term 
(Moriya [22]), that the main component is perpendicular to the spins for crystals with a 
mirror plane or n-fold (n > 3) rotation symmetry (but no inversion centre). The result 
can give a hint of the reason why those symmetries dominate in helical systems (table 1). 
For itinerant magnetic systems an exhaustive investigation of expression (12) should give 
more information about this topic, but this is beyond scope of this paper. 

5. Numerical calculation of the anisotropic susceptibility 

In order to obtain an estimate of the magnitude of the symmetric and antisymmetric 
contributions to the susceptibility, we have numerically calculated the non-diagonal 
matrix elements, i.e. the expressions (47) and (48) for the band structuresgiven in figures 
1-3. The same approximations as for the diagonal terms were adapted. Unfortunately, 
the spin-orbit energy and the dispersion relation of Lk are complicated to calculate. We 
have therefore supposed that Lk is a constant. This can partly be justified by the result 
from orbital susceptibility calculations for 3d elements by Yasui and Shimizu [23]. The 
calculations have been performed for spin-orbit energies that correspond to splittings 
of 1%, 5% and 10% of the corresponding band energies. The result indicated that the 
magnitudes of the anisotropic susceptibility vary approximately linearly with the spin- 
orbit energy. Throughout, the symmetric terms are about a factor 2-3 larger than the 
antisymmetric ones and the total anisotropic contribution varies between 5 and 30% of 
the corresponding isotropic term (figure 1). The shapes of the curves are similar for the 
different contributions but somewhat flatter than the isotropic term. For example, the 
peaks in the anisotropic ~ ( q )  curve have the same positions with respect to q but the 
half-widths are a factor 2-3 larger than in figures 2(a) and (b ) .  
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r H N r P H 

Figure 5.  Nonmagnetic band structures for Cr and Fe calculated by the LMTO method. The 
small difference in the shape between the bands of Cr and Fe has been neglected. 

6. Application to Cr and MnP 

Cr is the classical example of a SDW and a two-band model has been used by Fedders and 
Martin [7] to explain the SDW. However, their interpretation based on Lomer's [6] 
analysis of the Fermi surface of Cr needs to be slightly modified. Moreover, a modern 
band calculation gives much more accurate information about the topology of the Fermi 
surface. 

We have therefore calculated the band structure of Cr self-consistently by the LMTO 
method. The atomic sphere approximation was adapted for the potential [24]. As can 
be seen in figure 5 ,  four bands intersect the Fermi level. In order to demonstrate that 
the area of close contact between two shifted bands and the Fermi surface is large, we 
have sketched in figure 6 the corresponding cross sections in the (1 00) plane (a hole for 
band (Y around H and excess charges only around r for band p). As Lomer pointed out 
already in 1962 [6], if one shifts band (Y or /3 by q = n / a  & E ( E  a small number), the 
energy denominator in a perturbation calculation (i.e. (28) in our model) is small over 
an appreciable region, namely the area of contact indicated in figure 6. 

The same interpretation for Fe (also BCC) gives about 50% smaller region of contact 
(cf. figure 6). Furthermore, analyses of the band structure of Fe and Cr show that Fe has 
3d bands almost parallel with the Fermi surface, which probably favours interband 
transition with q = 0. 

Manganese phosphide (MnP) has orthorhombic crystal structure with the space 
group Pnma (eight atomsper unit cell) and a helical spin arrangement at low temperature 
which propagates in the z direction with q = 16" [18]. The band structure for non- 
magnetic MnP has been calculated with the LMTO method. According to figure 7 this 
system is approximately a two-band system, of the same type as in figure 2, in the xz 
plane and close to the Fermi level. Band /3 has a hole centred around the r point and 
a small pocket of electrons between r and x. Band (Y also has a hole in the k,-k, plane 
of approximately the same shape as band /3 but is translated in the z direction about 
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Figure 6. The cross section in reciprocal space of the (1 00) plane of the Fermi surface for 
the bands marked a and p in figure 4. Hatching indicates a separate occupied electron zone 
for band a in Cr. Band p has a hole around the H point marked with a full curve. The 
corresponding border lines are shown broken for Fe. 

\ 
\ I 

0 15 - 

2 r x 
Figure7. Part of the nonmagnetic band structure for MnP, calculated by the LMTO method. 

q2 = 15-65' if we assume an accuracy of * 10 mRyd in the band calculation (figure 8). 
It thus seems that, if the band structure is sufficiently accurately calculated, one can in the 
same way as for Cr qualitatively describe the occurrence of a helix and the propagation 
direction in terms of transitions between the bands wand p. 

7. Conclusions 

This work shows that, by combining perturbation theory with non-magnetic band cal- 
culations and symmetry analyses, one can get qualitative information about heli- 
magnetism and SDW, which one cannot get from self-consistent bands or cluster 
calculations of large magnetic cells. The determining factor for an incommensurate 
magnetic structure, in the present model, is that the region of close contact between the 
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Figure 8. Sketch of the cross section in the reciprocal (101) plane of the Fermi surface for 
the bands marked (Y and p in figure 6. Hatching labels occupation of bands (Y and p ,  
respectively, as shown. 

q-shifted band structure and the Fermi surface is larger than for the corresponding 
unshifted (i.e. q = 0) band structure. 

How powerful the approach is depends on how well the approximations introduced 
fit to the real system. It is doubtful, for example, if the method can be applied to systems 
with many bands that cross each other and the Fermi level several times. A test of this 
approach should be the Pnma system (to which MnP belongs). Because several helical 
and ferromagnetic compounds belong to this space group, one can investigate if some 
of the systems can be approximated by two-band systems and it is possible to determine 
the magnetic structure by studying transitions between two bands near to the Fermi 
level. By symmetry considerations of the anisotropic energy for different spin con- 
figurations, we have found that it is possible to relate the space distribution of the spins 
to different symmetries of the exchange energy. 
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